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Abstract

During its 18 month of science operations in lunar orbit, theAdvanced Micro-Imager Experiment (AMIE) aboard the SMART-1
spacecraft acquired about 32 000 images of the lunar surface. 113 NONE filter images have captured a location close to the lunar
south pole which we have identified to be a peak of (almost) eternal light. We have selected five images taken in southern lunar
summer (i.e., with the sun about 1.5◦ above the horizon) representing diverse illumination directions to reconstruct the terrain by
means of shape from shading. The approach is quite novel as ituses multiple images simultaneously by iteratively reconstructing a
digital terrain model (DTM) which is consistent with the surface brightnesses observed in all images. The resultant DTMcovers a
square area of 20 km width with 50 m resolution.
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1. Introduction

(???)

2. The peak of (almost) eternal light

The south polar area is considered as possible target for fu-
ture lander missions. Of particular interest is the availability
of sunlight on the surface over extended periods of time. Be-
cause of the low obliquity of the Moon’s rotation axis, it was
suspected that there may be peaks which are illuminated most
of the year. Theoretically, there could even be one so-called
peak of eternal light which is illuminated all the time. Because
of the polar orbit of SMART-1, the polar areas could be im-
aged frequently. During the 18 month of science operation,
images over a wide range of illumination conditions have been
acquired. These allow to search for peaks with favourable light-
ing.

We began our search for the peak of eternal light in the south
polar region by just visually browsing AMIE images. A candi-
date set was formed from sites which were illuminated in many
images. Whenever an image was found were a candidate site
was in shadow while at least one of the other candidate sites
was still illuminated, the site in shadow was eliminated from
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Figure 1: Mosaic of Clemetine imagery. The asterisks mark landing sites under
consideration for future robotic missions. The circle marks the candidate site
for the peak of eternal light. Note that in this image the zeromeridian is not
pointing straight upward (like in the other map projected images shown herein),
but slightly tiltet to the left. Mosaic with landing sites taken from?, by courtesy
of the author.

the candidate list. This process led quickly to only one remain-
ing candidate site for the peak of eternal light. It is located at
137◦W, 17 km from the south pole, cf. Fig.??.

Having identified our candidate site, we inspected all AMIE
NONE filter images with this site in the field of view. There are
113 such images. Their illumination conditions are illustrated
in Fig. ??. In almost all of them, that is in 109 images, the peak
is illuminated, however, in four images, the peak is in shadow.
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Figure 2: Illumination conditions for the 113 AMIE NONE filter images show-
ing the peak of light. Note the different scale of sub solar longitude and latitude.
Black filled circles represent the four images where the peakis in shadow; for
the other images it is illuminated. Grey filled circles denote the five images
selected for shape from shading.

The four images where the peak is dark were taken at very
similar illumination conditions, with subsolar longitudeclose to
45◦W and subsolar latitude close to 1.5◦N. Thus the incidence
angle is always larger than 90◦ when the peak is dark. This indi-
cates that the peak may be the highest one in the area, although
the light is not completely eternal.

So this site is not truely a peak of eternal light, but we could
not find a better candidate. Therefore, we believe that this site
is the one in the south polar area which comes closest to a peak
of eternal light.

3. Images used

The selection of a set of images for a concerted shape from
shading approach was driven by three conditions:

• The sun should be “high” in the sky, i.e., the sub solar lati-
tude should be close to the lowest possbile value of−1.5◦.

• The azimuths of illuminations should cover the full circle
with a spacing as even as possible.

• The images should not be saturated.

The latter condition could not be perfectly met. Each of the im-
ages with acceptable illumination conditions is at least slightly
saturated in some small area. Avoiding images which are heav-
ily saturated over large areas left us with a set of five selected
images. Their illumination conditions are marked by grey filled
circles in Fig.??. The selected images are listed in Tab.??.

The AMIE images used herein have been dark corrected and
flat fielded based on master frames created from flight data ac-
quired in lunar orbit. All image pixels should be correctly cali-
brated relative to each other, however, the absolut calibration is
not known.

Figure 3: Except bottom right:The five images used for the concerted shape
from shading approach, mapped to a common square grid of 20 kmwidth in
orthographic polar projection. The vertical axis is parallel to the zero meridian
(north up). At the upper right margin, the wall of crater shackleton in visible.
From left to right and top to bottom, the images are in the sequence of their
reference numbers 1–5 as given in Tab.??. Bottom right:Model image created
by rendering the reconstructed DTM, cf. Sec.??.

The five images are manually co-registered, which requires
considerable care because of the very different illuminations.
The co-registration could be done with an accuracy of 100 m,
which is slightly lower than the image resolution of about 50m
per pixel. The images are then mapped to a common grid of
401× 401 points with an even spacing of 50 m in orthographic
polar projection. Taking the south pole as co-ordinate origin
and the y-axis parallel to the zero meridian (north up), the center
point of the grid is located atx = −11 km,y = −12 km. The
five mapped images are shown in Fig.??.

4. Multi-illumination shape from shading

4.1. Approach and grid layout

Combining several images does not only provide more illu-
minated area but does also much better constrain the generally
ill-posed shape from shading problem. Leti andebe incidence

2



Ref Orb# Img# D [AU] Inc [◦] Em [◦] SLon [◦] SLat [◦] ∆x [km] ∆y [km]
1 1667 3 0.9846 88.19 1.40 −72.60 −1.55 0.0 0.0
2 1690 3 0.9820 87.91 0.96−130.66 −1.53 0.0 −0.3
3 1860 3 0.9830 88.51 0.97 160.15 −1.23 −0.9 0.1
4 1739 3 0.9829 88.77 0.83 105.45 −1.51 −0.5 0.0
5 1613 1 0.9860 89.10 1.44 63.41 −1.43 −0.2 −0.2

Table 1: List of the five selected images. The columns providea reference number used herein, the orbit number, the image number (in this orbit), the distance of
the Moon from the Sun, incidence angle, emision angle, sub solar longitude, sub solar latitude, and the translations applied in x andy direction to coregister the
images.
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Figure 4: Points of the DTM elevation grid (•) and points of the grid of bright-
nesses and slope constraints (×). The actual brightness grid has 401× 401
points, the actual DTM grid has 402× 402 points.

and emmission angle, respectively. Assuming the Lommel-
Seeliger law, the surface reflectance function is

rLS ∝
cosi

cosi + cose
. (1)

The observed surface brightness does only depend on the slope
in the downsun direction (on photometric longitude), butnot
crosswise to it (on photometric latitude). Therefore, froma sin-
gle image, one can only compute profiles in the downsun di-
rection, but the elevation of these profiles relative to eachother
is unknown. With our approach combining information from
different illumination directions, we directly compute a full 3D
Digital Terrain Model (DTM), not just profiles. Starting out
from a flat surface, the elevation values of the grid points of
the DTM are iteratively adjusted to yield slopes between these
points which are compatible with the observed brightnessesin
all images.

We define the grid of elevation points for the DTM in a way
which puts the points of observed brightnesses just in between
the DTM points, as the brightnesses constrain the slopes be-
tween these points, cf. Fig.??. In climate modelling, this type
of staggered grids representing scalar and gradient related quan-
tities is known as Arakawa B grid.

4.2. Initial computations

Our evenly spaced grids are defined in orthographic polar
projection, with they-axis parallel to the zero meridian (north
up), cf. Fig.??. For each imagek = 1 . . .5, the downsun direc-
tion measured counterclockwise from thex-axis is

φ⊙(k) = −(SLon(k) + 90◦), (2)

where SLon is the sub solar longitude, cf. Tab.??. Each (in-
ner) DTM pixel has four diagonal neighbours: bottom left (bl),

bottom right (br), top right (tr) and top left (tl). Any constraint
on the slope to a neighbouring pixel is only strong if the pixel
lies in the downsun (or upsun) direction of the image which im-
poses the constrain (cf. Sec.??). Therefore, for each image, we
introduce weighting factors depending on the cosine beween
the direction to the diagonal neighbour pixel and the downsun
direction:

µbl(k) = cos(φ⊙(k) − 45◦), (3)

µbr(k) = cos(φ⊙(k) − 135◦), (4)

µtr(k) = cos(φ⊙(k) − 225◦), (5)

µtl(k) = cos(φ⊙(k) − 315◦). (6)

Throughout our computations, we make the approximative
assumption that the camera looked exactly vertically down onto
our grid. This is correct within less than two degrees con-
cerning the very small nominal (flat surface) emission angles
(cf. Tab.??) and the proximity of the target area to the south
pole. With this assumption, the phase angles of the images
k = 1 . . .5 are simply

α(k) = 90◦ + SLat(k), (7)

where SLat is the sub solar latitude, cf. Tab.??.
Let the observed brightnesses from the images be given by

(

B(k, ix, iy)
)

k=1...5, ix=1...401, iy=1...401
, (8)

with k denoting the image andix, iy numbering the pixels. If an
image does not cover the complete grid, the uncovered pixels
are marked invalid. In addition, shadow pixels are marked in-
valid. We consider a pixel to be in shadow ifB(k, ix, iy) < 0.1.
The threshold value of 0.1 has been chosen in order to repro-
duce the shadow assessment of the human eye. No unit can be
given for the AMIE brighness values, because they have not yet
been absolutely calibrated.

We have to prescribe abrighness scaling factor A. This fac-
tor comprises the surface albedo (which is assumed to be con-
stant) and the unkown absolute calibration of the camera. The
factorA is adjusted by a trial and error procedure as described
in Sec.??. The finally adopted value is

A = 8. (9)

Following the Lommel-Seeliger law (cf. Sec.??), we define a
normalized surface reflectance function in dependence on phase
angleα and emmission anglee, i.e.

R(α, e) =

{

cosi
cosi+cose if cosi > 0 and cose> 0,
0 else,

(10)
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where the incidence angle is simply

i = e− α, (11)

because we assume that the surface slope has only a downsun
component. Based on this, we also define the inverse function
which computes the emmission angle in dependence on phase
angleα and normalized brightnessb, i.e.

E(α, b) =
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With the help of these function, we can compute for each pixel
(ix, iy) of each imagek the step in elevation between two diag-
onally neighboured DTM grid points which would be required
to reproduce the observed brightness (if the DTM grid point
separation was in downsun direction):

s(k, ix, iy) =
√

2d · tan

(

E

(

αk,min

(

1,
B(k, ix, iy)

A

)))

, (13)

whered = 50 m is the grid spacing. Theoretically,B(k, ix, iy)/A
should not be larger than unity, however, because of an (ini-
tially) improper choice of the brightness scaling factorA and
because of measurement errors, it might happen, and therefore
we constrain the argument ofE. The elevation steps in only
computed for valid pixels, i.e., for pixels for which a brightness
measurement is availableandwhich are not in shadow.

The elevations of the DTM are defined on a 402× 402 grid
which is staggered with the grid of brightnesses and elevation
steps as illustrated in Fig.??. Let the elevations be given by

(

z(ix, iy)
)

ix=0...401, iy=0...401
. (14)

Note that the grid point indexing starts with 0 forz, while it
starts with 1 forB and s. The slope points(k, 1, 1) lies in the
center beween the diagonal neighboursz(0, 0) andz(1, 1) (and
also betweenz(1, 0) andz(0, 1)). The elevationsz(ix, iy) are ini-
tiallized with zero.

4.3. Iterative computation of the DTM

In each iteration step, a new value for the elevation of each
grid point is computed according to

z′(ix, iy) =

∑5
k=1

∑4
j=1 wk j ξk j +

∑4
i=1 λ ζi

∑5
k=1

∑4
j=1 wk j + 4λ

. (15)

Here wk j andλ are weighting factors andξ and ζ are eleva-
tions imposed by certain conditions. The indexk runs over all
images,j runs over all diagonal neighbours of the DTM pixel
(ix, iy), andi runs over all orthogonal neighbours.

The old elevation of the bottom left neighbour isz(ix−1, iy−
1). To reproduce the observed brightnessB(k, ix, iy), the eleva-
tion at (ix, iy) should be

ξk1 = z(ix − 1, iy − 1)+ s(k, ix, iy) · µbl(k), (16)

cf. Eqs. (??, ??). The weighting factor for this contribution is

wk1 = µbl(k)2, (17)

which gives unity if the two DTM points are separated parallel
to the downsun direction and zero if the separation is orthog-
onal. The contributions of the other three diagonal neighbours
are

ξk2 = z(ix + 1, iy − 1)+ s(k, ix + 1, iy) · µbr(k), (18)

ξk3 = z(ix + 1, iy + 1)+ s(k, ix + 1, iy + 1) · µtr(k), (19)

ξk3 = z(ix − 1, iy + 1)+ s(k, ix, iy + 1) · µtl(k), (20)

with the weighting factors

wk2 = µbr(k)2, (21)

wk3 = µtr(k)2, (22)

wk4 = µtl(k)2. (23)

Each contribution is only computed and applied if there actually
is a neighbour DTM point within the grid boundariesand if the
brightness grid point halfway to the DTM point is valid.

The orthogonal DTM neighbour points are used to provide
smoothness constraints. Their contribution is simply

ζ1 = z(ix − 1, iy), (24)

ζ2 = z(ix + 1, iy), (25)

ζ3 = z(ix, iy − 1), (26)

ζ4 = z(ix, iy + 1). (27)

The respective weighting factor, cf. Eq. (??) is set to

λ = 0.005. (28)

Because this value is usually small compared to the weighting
factorswk j, the smoothness contraints only take effect when no
valid neighbouring brightness points are available or whenall
valid brightness neighbours lay almost crosswise to the down-
sun direction. The smoothness contributions do not depend on
valid brightness points, thus they are computed for all orthogo-
nal neighbours (as long as they are within the grid boundaries).
The (albeit weak) constraint of smoothmess between orthogo-
nal neighbours also prevents the separation into two subgrids, a
well known problem of the Arakawa B grid if only interaction
between diaogonal neighbours is concidered.

At the end of each iteration, the grid of new elevations
z′(ix, iy) is copied to the old elevationsz(ix, iy). We apply
100 000 such iterations. After this, the change by each itera-
tion has decreased to almost zero.

4.4. Adjustment of the brightness scaling factor

As stated in Sec.??, we have to prescibe a brightness scaling
factor, cf. Eq. (??). This scaling factorA is a priori unknown.
It is important to note that for grazing incidence — i.e., inci-
dence angles close to 90◦ — the brightness is approximately
linearly related to (the downsun component of) surface slope.
This holds for the Lommel-Seeliger reflectance functino as well
as for other common reflectance functions. The propotionality
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constant of this linear relation varies between relectancefunc-
tions, but it can be incorporated in our brightness scaling factor.
Therefore, our DTM reconstruction doesnotdepend very much
on the actual choice of the relectance function.

However, the reconstruction depends on the scaling factor.
Because of the approximately linear relations between surface
slope and brightness, the elevations of the resultant DTM scale
(inversely) with the assumed brightness scaling factorA. To
constrain the DTM, we use the extent of shadows. Shadows are
not used in the actual DTM reconstruction. We just ignore shad-
owed areas and concider only local surface slope. Taking into
account the obscuration of the sun by distant terrain would be
much too expensive computationally to be incorporated in the
shape from shading procedure. However, if a DTM is given, it
is possible to render it concidering local surface slopeandshad-
ows casted by distant terrain. For our purpose, it is sufficient to
treat interreflection only approcimatively as described by???.

Therefore, we adopt the following procedure to constrain the
brightness scaling factor:

1. Start with an initial guess for the scaling factorA.
2. Compute a DTM by means of multi-illumination shape

from shading.
3. Render the DTM, tracing shadows casted by distant ter-

rain.
4. Compare the rendered image to the observed image.
5. If the rendered image shows too much shadow, increaseA;

if it shows too little shadow, decreaseA.
6. Repeat from 2. until the extent of shadow matches.

For comparison, we use the image with reference number 5,
cf. Tab.??. To the bottom right of Fig.??, the model image
created by rendering the final DTM with the illumination con-
dition of image 5 is shown, side by side with the real image 5.
While at first sight there seem to be significant discrepancies,
the similarity is in fact quite satisfactory. The differences near
the top edge of the image are in an area which is partly dark
in all images and partly only illuminated in one image (num-
ber 1), thus the DTM is not very well contrained in this area
(cf. also Sec.??). The differences in the lower right are caused
by shadows casted by terrain outside the DTM domain, thus
they can not be reproduced by just rendering the DTM. The
correct height scaling of the DTM is confirmed by the repro-
duced extent of shadow casted by the rim of Shackleton crater
onto the flank of the peak (close to center of right edge) and
onto the flank of of the elevated crater at the top left (straight
diagonal shadow line).

5. Results and discussion

The resultant DTM is illustrated in Figs.?? and??.
Fig.?? shows an oblique view of the DTM which was created

by projecting image 5 onto the DTM.
Particularly for the planning of future lander missions, the

retrieved DTM is of great interest. It has also been used for
outreach purposes by producing a movie of a simulated fly over.

Figure 5: DTM rendered with simple realtime 3D renderer and artificial lighting
for illustration. The DTM consists of 402× 402 grid points with 50 m spacing.
For the actual elevation in meters see Fig.??.

Figure 6: DTM elevation (color in the online version). The zero level is arbi-
trary.
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Figure 7: Oblique view of the peak of (almost) eternal light,created by pro-
jecting image 5 onto the DTM. The elevation is exaggerated five times. In the
foreground is the inner crater wall of Shackleton.
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